HTML AESTRACT * LINKEES

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 16 22 OCTOBER 2004

Coherent switching with decay of mixing: An improved treatment
of electronic coherence for non-Born—Oppenheimer trajectories

Chaoyuan Zhu, Shikha Nangia, Ahren W. Jasper, and Donald G. Truhlar
Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis,
Minnesota 55455-0431

(Received 16 June 2004; accepted 26 July 2004

The self-consistent decay-of-mixingCDM) semiclassical trajectory method for electronically
nonadiabatic dynamics is improved by modifying the switching probability that determines the
instantaneous electronic state toward which the system decoheres. This method is called coherent
switching with decay of mixingCSDM), and it differs from the previously presented SCDM
method in that the electronic amplitudes controlling the switching of the decoherent state are treated
fully coherently in the electronic equations of motion for each complete passage through a strong
interaction region. It is tested against accurate quantum mechanical calculations for 12 atom-diatom
scattering test cases. Also tested are the SCDM method and the trajectory surface hopping method
of Parlant and Gislason that requires coherent passages through each strong interaction region, and
which we call the “exact complete passage” trajectory surface hopfE@P-TSH method. The

results are compared with previously presented results for the fewest switches with time uncertainty
and Tully’s fewest switche€TFS) surface hopping methods and the semiclassical Ehrenfest method.
We find that the CSDM method is the most accurate of the semiclassical trajectory methods tested.
Including coherent passages improves the accuracy of the SCDM migthodhe CSDM method

is more accurate than the SCDM methbdt not of the trajectory surface hopping method., the
ECP-TSH method is not more accurate on average than the TFS metl@d®004 American
Institute of Physics.[DOI: 10.1063/1.1793991

I. INTRODUCTION trajectory, which is obtained by propagating the solution to
the time-dependent electronic Schirmger equation coher-
The development of semiclassical methods for nonently along the classical trajectory. The electronic density
Born—Oppenheimer trajectorig¢ise., classical or quasiclassi- matrices for any two trajectories in the ensemble may differ
cal molecular dynamics that involves coupled electronicor two reasonst1) the two trajectories have different initial
stateg requires a delicate blending of quantum mechanics fogggrdinates and/or momenta, af@) they hop at different
the electronic motions with classicedr quasiclassicaltra-  {ines along their trajectories. The ensemble averaged elec-
jectories for the nuclear motiorsThe treatment of Born— tronic density matrixwhich may be compared with the ac-

Oppenheimer  breakdown, therefore, requires an artful, e quantum mechanical electronic density mpgfiec-

approactt, and several methods have been developed. Wﬁvely decoheres (ie., the off-diagonal elements
distinguish four general classes of methods, which differ insystematically tend toward zerdor the two reasons men-

their treatment of electronic decoherence. Decoherence is dﬁbned above, i.e., due to the initial width of the wave packet

fined in this paper as the tendency of the time-evolved den: : . S

. . : . .—_and due to the divergence of trajectories in phase space
sity matrix to assume a form corresponding to a statistica .
ensemble of states rather than a coherent combination & used py surfa_ce hops_. We stress that for egch t_raj_e ctory the
state wave vectors. This is sometimes called dephasing &Jectronlc dgnsﬂy matrix 'S fully coherent, i.e., it is only
disentanglement when the entire ensemble is averaged that the two sources of

The first general approach to non-Born—OppenheimeFiecoherence mentioned above arise. )

trajectories is the trajectory surface hopging'SH) ap- The second general class C;I .methc_)ds includes .self—
proach, in which individual trajectories evolve independentlyconsistent potentialSCH methods, in which the nuclei
on a single potential energy surface with occasional instan€V0Ive on an effective time-dependent potential energy sur-
taneous hops or switches between surfaces. The most si@ce that depends on the current quantum mechanical elec-
cessful of the well-tested versions of this approach are Tullronic density matrix. The simplest version of this approach
ly's fewest switche$TFS) method and the fewest switches is the semiclassical EhrenfeSE) method; ™ and the most
with time uncertaintf FSTU) method*® For these methods, highly developed versions are the mean field with surface
one can think of an accurate time-dependent wave packet &9pping(MF/SH) method® and the self-consistent decay of
being modeled by a swarm of independent trajectories propavixing (SCDM) algorithm™ The SE method involves an
gating on the different electronic surfaces. Each trajectorygnsemble of trajectories and therefore includes some deco-
hops stochastically between the electronic surfaces accordirterence due to the initial spread of the wave packet. The
to an associated electronic density matrix, different for eactelectronic density matrix for each trajectory in the ensemble
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is propagated with full coherence, as discussed above for thtbeir method the “exact” surface hopping scheme because it
TSH method. Furthermore, SE trajectories evolve under theses the exact time-dependent electronic Stihger equa-
influence of all of the electronic states at once according tdion for electronic motion in each complete passage through
the electronic state density matrixe., there is no hopping a region of strong coupling. This could be confusing because
between statgessuch that each trajectory in the ensemble isa variety of surface hopping methods and other semiclassical
fully coherent. During a rapid passage of a single region oimethods use the exact time-dependent electronic Schro
strong coupling, one may expect fully coherent nuclear mo<dinger equation in one or another way as part of the algo-
tion, and the SE approach is reasonable for that case. Thighm; to emphasize the special character of the Parlant-
lack of decoherence, however, leads to nonphysical behavidggislason method we call it “exact complete passage”
in the asymptotic regions of the simulatiofi®., as the sys- trajectory surface hoppinECP-TSH.
tem comes into the interaction region from reactants or goes The methods discussed so far are independent trajectory
toward productswhere the coupling is often small or zero; methods. Another class of methods for non-Born—
this contrasts with the TSH approach, which leads to physiOppenheimer trajectories involves coupled trajectories,
cal asymptotic behavior but may be less accurate in descritwhere an entire swarm of trajectories is evolved simulta-
ing strongly coupled motions. neously in such a way that the entire electronic state density
The SCDM method introduces the physical asymptoticmatrix influences the motion of each trajectory. This is a very
behavior of a TSH method into a SCP method. In particularreasonable approach because it is the ensemble of trajecto-
decoherencédiscussed above only as an effect of ensembleies, not the individual phase points, that should be inter-
averaging is introduced explicitly into the equations of mo- preted when one semiclassically infers quantum mechanical
tion for each individual trajectory in an average way, whiletransition probabilities from classical mechanics. The most
still propagating each trajectory independently. This modifi-thoroughly developed coupled-trajectory schemes are the
cation results in a SE-like trajectory with the correct limiting quantum/classical Liouville methods of Martens and
behavior. co-workers” and other¥ and the full multiple spawning
Alternatively one might try to improve upon TSH meth- method'® Like SCDM, this class of methods explicitly in-
ods by making them more coherent. This leads to a class afludes dynamical decoherence, but it is more complicated
methods that may be called coherent passage methods. iman the independent-trajectory methods, and coupled-
coherent passage methods, a trial classical path with contintrajectory methods require considerably more computational
ous momenta is used to propagate the system through affort to fully sample the extended phase space of both the
entire strong coupling region with a fully coherent treatmentnuclear coordinates and momenta and the electronic prob-
of the electronic density matrit.e., without surface hopping ability amplitudes. Therefore, although they are very prom-
and without decay of mixing Then, the electronic transition ising, we will not consider coupled-trajectory methods fur-
probabilities from this coherent evolution are used in someher in the present paper.
fashion to control the trajectory outcome, but subsequent Our recent work has involved refining both the TSH and
passages through this or any other strong interaction regio8CP approaches leading, respectively, to the recent develop-
are not treated as coherent with the previous passage. Theents of the FSTURef. 4 and SCDM(Ref. 1) methods.
importance of decoherence between successive passaghls emphasize that, in the context of TSH, the TFS and
through a strong interaction region has been demonstratddSTU surface hopping schemes both allow hops even in the
most clearly by Thachuk, Ivanov, and Wardf&in a low-  middle of a single passage of a strong coupling region, and,
dimensionality problem, namely, the evolution of a two-statein the context of SCP calculations, the SCDM scheme allows
diatomic molecule in a strong electromagnetic field; theirsome decay of mixing at all points along a trajectory, even
discussion is very enlightening and makes it clear that théor the equations determining the probability of switching
combination of coherent evolution through a strong interacthe decoherent state, and therefore these methods do not con-
tion region and decoherence between such passages can digon to the coherent passage ansatz. It is not clear from
be important in the general cagdthough their algorithm is previous work how important this might be for multidimen-
not general Their examples make it especially clear thatsional problems since Refs. 12 and 13 only tested the impor-
maintaining coherence over an entire trajectory can lead ttance of coherent complete passage for low-dimensional
significant errors. One classical path method that was deveproblems where phases, coherence, and quantum mechanical
oped with this kind of consideration as a motivation is theinterference effects are not subject to even the minimal av-
surface hopping method of Parlant and Gislakbff,which  eraging inherent in collisions of molecules when one does
differs from an earlier method of Kuntz, Kendrick, and not initially select and finally analyze the angular momentum
Whitton®® in the prescription for calculating the hopping projection quantum numbers. Therefore in this paper we con-
probability and from an earlier method of Blais and TruHiar sider coherent complete passage methods in more detail and
in its insistence on coherent evolution through each “com-compare their performance to that of the TFS, FSTU, SE,
plete passageé® of a strong coupling region. This method, and SCDM methods. In particular we examine two such
therefore, mitigates some of the decoherence that afises methods, the ECP-TSH methidddiscussed above and a
other TSH methods from surface hops within strongly coherent-passage-type method obtained by employing a co-
coupled regions as well as the inaccuracies explained blgerent switching algorithm in SCDM for each complete pas-
Thachuk, Ivanov, and Wardlathat arise from treating suc- sage of a strong coupling region. We call the latter method
cessive passages coherently. Parlant and Gisfasmiled coherent switches with decay of mixing or CSDM. We also
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test a variant, explained below, called CSDM-C. R=Plu, (5)
Section Il reviews fundamental time-dependent coupled .
equations for the motion of the electrons and nuclei that are P=—VgVE. (6)

use_d by all of the methods tested in this paper. Sectipn [l We note that the electronic Schiiager equation may be
reviews the ECP-TSH method and compares its equations Brmulated in the particle representation where electronic ac-

:Eosg ngthhe Ir']: Sd agd tF_ST\L; metho?s.ﬂ?ectlot?] I:j/ Ipresentaon and angle variables are transformed to particlelike gen-
€ method. section V presents the methodology and 5 ;64 coordinates and momefitar in the density repre-

;:_om%z]i rlsog_of se_verall stemlclas;slcall trajeitory mSeth?_ds f\(/) entation of Eq.(1). Although the two representations are
e three-dimensional atom-molecule systems. Section quivalent in the case of two electronic states, the particle

presents the results and discussion. Section VII Summ":lr'z‘?gpresentation requires an adiabatic—diabatic transformation

the main conclusions. that can be ambiguous for the case of more than two elec-
tronic state$! Throughout the present paper, we use the den-
Il. FUNDAMENTAL TIME-DEPENDENT EQUATIONS sity representation as in EQ). e
We assume that the adiabatic and diabatic representa-
All of the methods tested in this paper employ the time-tions are the same in asymptotic regions, so that hoth
dependent electronic Schiinger equation, which may be with k#k’ andd,,, vanish asymptotically.

written as follows in terms of the elemenig,, of the elec- In TSH methodsVE is given by a single potential en-
tronic density matrix! ergy surfacdi.e., an adiabatic potential energy surfageor

a diabatic potential energy surfatk, in the adiabatic and
i7ipe = > (o [Uk—i%R-dg]— pra[Uper — iRy 1), diabatic representations, respectivelgndk may switch to

! some other statk’ at certain points along the trajectory ac-
@ cording to some hopping probability,,, , which is a func-
wherek andk’ label electronic stateg, k'=1,2,...m, where  tion of the electronic state density matrjpx and its time
m is the number of electronic staje® is anN-dimensional derivative. Except possibly at hogsr frustrated hops ex-
vector of nuclear coordinates, an overdot denotes a time delained below, p is obtained by integrating Eq1) without
rivative, andU,,, are the matrix elements of the electronic any modifications. In SCP method&; is more complicated,
HamiltonianHy, (which includes nuclear-nuclear repulsjon and in SCP methods that include decay of mixing, one also
_ , modifies Eq.(1). We will consider SCP methods further in
U =(k[Helk'). 2

Sec. IV.

The diagonal elements df,,, are called potential energy
surfaces, and th_e off-diagonal e_Iements couple motlon_ln thﬁl_ ECP-TSH METHOD
various electronic states. The eigenvaluedf)adre the adia-
batic potential energy surfaces, callégd. The nonadiabatic In trajectory surface hoppingl'SH) methods, nonadia-
coupling vectordy,, is an mXm anti-Hermitian matrix in  batic transitions are treated as discontinuous héms
electronic state space, and each element is a vect®r in switcheg from one potential surface to another. The elec-

_ , tronic coupled equationgl) are integrated along a classical

i = (k[ VR[K'), () trai - -
rajectory and are used to determine the location of hops. In

where V is the N-dimensional nuclear gradient. We solve general, trajectory surface hopping methods involve trajecto-
the equations in an isoinertial, mass-scaled nuclear coordiies that hop back and forth between potential energy sur-
nate systenR in which all nuclear masses are scaled to thefaces, and they differ in their prescription for how to do so.
same reduced mass. The momentum conjugate 8 is  In Sec. |, we mentioned that the most satisfactory versions of
calledP. In the adiabatic representatidd,is a diagonal ma- the well-tested TSH approaches are the TFS méthnd the
trix calledV; and one can define a “diabatic” representation FSTU method:® which is an extension of the TFS method
whered,, is zero andU is not diagonal. Strictly diabatic that improves the treatment of frustrated hops, which are
representations do not exfStbut representations in which tentative hops forbidden by energy or momentum conserva-
diw is small enough to be neglected are very useful andiion. Both TFS and FSTU, in principle, allow a trajectory to
following a widespread practice in the field, will be called hop whenevep,, is changing. On the other hand, the ECP-

diabatic in the present paper. TSH method, developed by Parlant and Gislaktis,defined
The semiclassical Hamiltonian that governs nuclear moin such that a trajectory is allowed to hop only where the
tion can be written as coupling is locally maximum. For instance, in the two-state
p2 case the ECP-TSH method uses
He=5—+VE, 4 :
24 W am=|Rdul) ™

where VE is an effective potential energy surface, and itsas a measure of the strength of the coupling. Hops are al-
form depends on the specific semiclassical trajectory metholbwed at positions along a trajectory where there is a local
and how that method treats non-Born—Oppenheimer effectgnaximum of this coupling strength function. Furthermore,
The nuclear motion is represented by a swarm of classicahe electronic density is reinitialized at all local minima(®f
trajectories, and the nuclear position and momentum of eache., py iS set to unity wherek is the currently occupied
trajectory evolves according to classical equations of motionelectronic state, and all othek/,» are set to zero. The hop-
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ping probability from statd to k’ at each maximum of? is in which the first part comes from fully coherent contribution
determined by integrating along a trajectory between the twan Eq. (1), and the second part is the decay-of-mixing tétm,
adjacent local minima of), i.e., by integrating from one

local minimum att; _; to another at;, wheret; is ith local _ pii i =K
minimum of Q(t). In particular, before it is reinitialized, ‘D Tik |
pr(ti) determines the hopping probability at the local maxi- ~ Pii — pii . (10
mum of ) betweent; _; andt;. In the ECP-TSH method, a o 1=K
trajectory undergoes complete coherent passage between two J#E K
adjacent local minima of) before the trajectory is brought for the diagonal elements, and
back to the maximum of) to allow for a hop. After the p
. . 1/ 1 1 . .
attempted hop, the coherenpg,: is destroyed ap,, is _Z _+_)Pija i#K, j#K
reinitialized. This is different from TFS and FSTU where 2\ 7k Tk
pkk 1S never reinitialized and is therefore fully coherent 1/ 1 ok 1 ) )
along each entire trajectory. Pi?Z §(mk§K Tk 7-_> pij, 1=K, J#K (11
Note that() tends to zero as— o after the collision(or K
photodissociation eventThis is interpreted as a local mini- Hlse L) 0 ik
mum, and so the trajectory can hop at the final local maxi- { 2\ Pk KZK Tkk  TiK Pij 0

mum of Q. Similarly t, is defined as the start of the trajec-

tory so that a hop can occur at the first local maximumtior for the off-diagonal elements. Detailed derivations of Eqs.

(10) and(11) are given in Ref. 11. The equations of motion

The original ECP-TSH applications by Parlant and - .
Gislasoi® used the so-called “ants” sampling scheme, for the nuclear position are given by Ec), and those for
the momentum are

where at each hopping location the trajectory is split into two
weighted branches. Both branches are propagated indepen- p_pC pb (12)
dently on the two potential energy surfaces, and each branch _ . . _
may undergo additional future branching. Later, Parlant andvhere the first term is the instantaneous change in momen-
Alexandet*® applied a mixed anteater/ants scheme, andum due to the fully coherent nonadiabatic motion deter-
Sizun, Song, and Gislast#® used the anteater sampling mined by Eqs(1), (6), and(18):
scheme where only one branch is followed. The sampling
algorithm involves a cutoff paramet€X¢; only maxima PC(t)=—2, pVrUkk— > 2 (2 Reprir) VrU ki

k k

with Q greater thar() o are recognized as possible hop- k' <k

ping locations. We apply the anteater implementation of the

ECP-TSH method, recognizing that for a large enough en- +2, > 2 (2Rep Uy - (13
semble of trajectories both the ants and anteater implemen- Iokw

tations should give the same results. In the diabatic representation, E4.3) becomes

Although the original ECP-TSH methbtiwas formu-
lated in the adiabatic representation, there is no reason why it pC sy _ _ ) )
cannot be applied in the diabatic representation. Notedzat PO Ek: PV Uk zk: k%:k (2 Repie) Vel
is given as a function of the matrix elementlby Eq.(A9) (14)
of Ref. 22, and in the two-state case, the nonadiabatic coUsq in the adiabatic representation, Et®) becomes
pling vectord;, provides an equally good measure of the
coupling in the diabatic representation as in the adiabatic
one!! In the present paper we therefore extend the ECP-TSH
method to the diabatic representation by using the same
scheme as is in the adiabatic representation based on the _
same reference equati¢n). This extension will be tested for - ; % Re(pic) (Vi™ Vie) e 19
the test cases in Sec. V.

Po(t) = — % PV rVi

The second term in Eq12) is the decoherent force and is

IV. SELF-CONSISTENT POTENTIAL METHODS given by

In the self-consistent potential methods, the effective po- po_ _ VP : 16
tential energy surfac¥F is Ps

with??
VE:ZK pkkUkk+Ek Z 2 dekkr)Ukk, . (8)
k' <k ]
D_ ° D ‘D

Recall that in the adiabatic representatioh,=V, and VE= Ek: Pkt ; k'§<:k 2 Re(py ) U - (17)

U =0 if k#k’, whereas in the diabatic representation the ) ] ] )
second term of Eq(8) is nonzero. In the decay-of-mixing The force in Eq(16) drives the trajectory to a pure electronic

methods, the electronic density evolves by state. The unit vectos represents the direction into which
) ¢ b energy is deposited and out of which energy is consumed,
Pij = pPij T pij 9 and it is considered in Sec. IVD. The decoherent state
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switches during the trajectory with the switches governed by 5
a switching probability that will be discussed in Sec. IV A— DK(t):; |djl (20
IvVC.

IV.A. NDM and

The natural decay of mixingNDM) method® computes
the switching probability by the most va application of the
fewest switches criterion. For example, in the two-state
case, the probability of switching from decoherent state ~ We also define a coherent set of state populafjggs . As
some other stat&’ between time and timet+dt is given ~ opposed topkk:, Which evolves by the decay-of-mixing

cK<t>=; |dij*Ryip| % (21)

by Egs. (9)—(11) and which is used in Eq$8) and (13)—(17),
: ‘¢ . -D ‘pkk: evolves by the completely coherent equatidn. At
Py K,=ma>< _ pKKdtO):mw{ _ (prkt i) dt ol. each local minimum oD(t) along trajectory, we seﬁij
- PKK PKK ’ =pjj for all i andj, and the probability of switching the
(18) decoherent state is given by
The multistate generalization of E@.8) is given in Eq.(Al) s dt
of Appendix A. PK—»K'me{ _ Pxk '0>_ 22)
PKK

This is called coherent switches with decay of mixing or
IV. B. SCDM CSDM. In the multistate case, E¢AL) replaces Eq(22).
As pointed out previousli ,')EK in Eq. (18) is always Alternatively, we could seTJij =pj; at each local minimum
positive, and this causes a system modeled using the NDMf Ck, and this is called CSDM based on a component of
method to artificially resist changing its decoherent statenonadiabatic coupling or CSDM-C.

The SCDM method makes a simple modification to @) We emphasize that the equations of motion governing
by dropping the decoherent part in the numerator, i.e., théhep;; elements and hence governing the switching probabil-
switching probability is given by ity in the CSDM method are treated in a coherent and unin-
. terrupted way throughout each complete passage through a
C dt . . i )
= - ma>< _ Pxk O) (19) strong coupling regioitalthough one does allow switches in
K=K okk ) the decoherent statebut decoherence is introduced irfig

gbetween different strong coupling regions by setting
=pjj; the ECP-TSH method also integrates the electronic
equations of motion in a coherent way throughout each com-
plete transversal of a strong coupling region, but it handles
decoherence differently in several respects. First of all, there
are no decay-of-mixing terms. Second, the ECP-TSH method
involves hops with discontinuities in the nuclear momentum,
The electronic density matrix elements. in the decay- and when a hop occurs it requires that one goes back to a
of-mixing algorithm vary along the trajectory and depend onpoint of maximal coupling, whereas the CSDM algorithm
the location of decoherent state switches. If one of theseever goes back to an earlier point in the trajectory. Third,
switches occurs during a traversal of a strong interaction reand this may be very important, in the ECP-TSH algorithm,
gion, the state change influences the dynamigsg.efin the  whether or not a hop occurs, at each local minimun@¢f),
remainder of that region. If we define coherence as the evahe electronic coefficients are reinitialized to unity or zero.
lution of the density matrix according to E¢l) with no  The analog in CSDM would be to sﬁgj = §jj oik rather than
external influence on the trajectory, then the SE method i§ij=pij . By settingTJij equal top;; , the amount of decoher-
coherent, but either decay of mixing or switches in the deence is determined by the difference between the two elec-
coherent state destroy coherence. The effective decoherenttenic density matricesp, which is propagated with decay-
in the SCDM method is less severe than that in the NDMof-mixing terms, andp, which is propagated coherently.
method; since this has been found to improve the reStits, Thus, in particular, the amount of decoherence introduced by
is interesting to consider a method that fully removes theCSDM at a local minimum oD (t) depends on the size of
decoherence from the electronic state equations for eadhe coupling region and other dynamical factors, whereas
strong interaction region; this is called the CSDM method. INECP-TSH fully destroys the coherence between any two
the CSDM method, the switching probability is controlled by strong coupling regions, no matter what their character is.
a fully coherent solution of Eq1) in each complete passage The NDM, SCDM, CSDM, and CSDM-C methods dif-
of a strong interaction region. However, the effective potenfer from each other only in the scheme that switches the
tial for nuclear motions is treated as in the SCDM method. decoherent state. The NDM method uses the decay-of-
Following Parlant and Gislasbhand Thachuk, Ivanov, mixing electronic density to calculate the switching probabil-
and Wardlaw? we modify the switching scheme to treat ity; the SCDM method eliminates the decoherent part of the
each complete passage of a strong coupling region coheelectronic density locally in the switching algorithm; and the
ently. We define CSDM and CSDM-C methods, in contrast, switch off the

This is called the self-consistent switching probability an
may be interpreted as “locally coherent.” Appendix A con-
tains the multistate generalization of E39).

IV.C. CSDM
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contribution of the decoherence to the electronic density ma-  5—[d,ao(P-d) Ak PyibPuib ]/

trix used in the switching probability over an entire region of L .

strong coupling. | dkk@o(P-dii) ik * PuibPuioll - (24)

e e e i o uatins(23 and (24 are for te ot case; s e,

of Kuntz?* which he has called the classical path surface 1 for a generalization of E423) to multiple states in both
L . . . adiabatic and diabatic representations, and we can generalize

hopping(CPSH method. Unlike ECP-TSH, which combines (24) in the same wa

complete coherent passage with surface hopping, or CSDI\)I:',q' Y

which combines them with a self-consistent potential

scheme, CPSH attempts to combine all three approaches. In

particular Kuntz uses the semiclassical Ehrenfest method in &.E. Decay-of-mixing time

given strong interaction region, followed by decay of mixing In general, the SCDM and CSDM algorithms presented
between strong interaction regions, after the last strong imera'\bove may be used with a variety of models for the decay-
action region, or when the probability in closed states is tooof-mixing times 7, . For example, we previousfy? pre-

IK - ’

high.'[AItP'oggh Kgntz c'alls thi§ decay Of, mixing “surface sented simple models based primarily on phase decay and on
hopping,” itis achieved in practice by adding decay terms 95 combination of phase decay and the requirement that de-
the Ehrenfest equation. The decay time is set equal to O.

. SN | . ; h ixing should vanish in the limit of low nuclear momentum.
times a monitoring interval, see E(L4) in Ref. 14a). T o Inaddition, Fiete and Heller and Turi and Rossky have pre-
monitoring interval is set equal to “one program unff*

hich I ¢ ‘2 short-time interval® sented treatments based on short-fimer perturbativé®
whic eguhas 54 hs' orr] tc:j a short-time mtervl : dBfe', treatments of Gaussian wave packets. These treatments pro-
cause of the way that the decay terms are employed, it is nQ)iéde general guides to the form of the physical decoherence

unr;easorr:ablebto think of fth”e d_ecayhseg][nents as smoothggl, tion: however, we need to emphasize that physical deco-
surface hops between or following Ehrenfest regipRer 8 parance and algorithmic demixing are closely related but

system with a singlg §trong interactioq regign the CPS uantitatively different. Algorithmic demixing is the decay of
method becomes similar to the semiclassical Ehrenfe

She reduced density matrix elemeritsf-diagonal elements
method with linear smooth samplihgSE-LSS. Since we y ) g

h iously sh Hi3 q to zero and diagonal elements to zero or unihat must be
ave previously shown that™ SCDM and NDM are more 5446 {6 5 quantum/classical algorithm in order that a calcu-

accurate than SE-LSS and tHaBCDM is more accurate lation based on an ensemble of independent trajectories of

than lNDM' we hav?_ only testeg adding the (;]Oherem'the classical subsystem simulates, as well as possible, the
complete-passage refinement to SCDM, not to the SE 0L, tion of a real system in which both electronic and

'\:IDM methods.hFurthermore we note thatlKFu"n;tzhcomhpare%udear coordinates are quantum mechanical. A single SCP
the CPSH method to ECP-TSH and conc that the trajectory has a physical nuclear kinetic energy only if the

two methods C?Ugh‘ to produce very similar resglts sinqe th%lectronic state is pure. But a quantum mechanical reduced
methods both integrate El) through the strong interaction density matrix generally corresponds to a mixture even when

region and differ only in technical aspects. Smcg We carmyna whole system is in a pure state; it corresponds to a pure
out a complete test of the ECP-TSH method, which has thg,e o1y if the whole system is in an unentangled pure state.
advantage of not involving an undetermined monitoring Nt s “in"order to obtain a practical semiclassical algorithm
terval, we do not test the later, more complicated CPSH,,50 on independent trajectories, we must devise an algo-
method. rithmic decay of mixing that does not correspond precisely to
quantum mechanical decoherence.

Although future work may develop more sophisticated
semiclassical justifications of the appropriate decay-of-
In SCDM, the decoherent direction was originally given mixing rates that should be used, the calculations presented
here are based on the assumption that we can use the sim-
plest treatment that satisfies the following two constraints:

(1) At low values ofP-s, Eq. (16) requires that

IV.D. Decoherent direction

11

by

5= (dyk@oPdik = PuinPyin)/ | dii@oP &l dick = PuinPuinll,

. ~ ~ . . P50
where ay is a bohr lengthP;, and dy, are unitless unit i ~ (PY", n>1 (25)

vectors in the direction ofP,, (the local vibrational TiK
momentur??) anddyy, respectivelyd, is the magnitude of
d, P is the component oP,;, in the direction ofdy,

andK is the decoherent state. The sign in E28) was cho-
sen such that the summation is additive. Since igthand {5 sfer.

P,i, are within the nonrotational subspace, usi@s the (2) The demixing time should not be shorter than the

decoherent direction conserves total angular momentumyy,test electronic time scale in the problem, which we take
There is some ambiguity in separating vibrational and rotaz, imply that

tional motion, i.e., in the definition d?,;,. To eliminate this
ambiguity, we replacd{( with P-dyy (i.e., the component 1_ Vi — Vi
of total momentum in the direction afy,). This yields Tk h '

in order that demixing does not occur when the momentum
in the direction that couples electronic and nuclear motion is
insufficient to support the required accompanying energy

(26)
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Two of the simplest possible functions that satisfy these con- The nine MXH cases are: the SB, SL, and WL param-
straints are etrizations of the MXH system with the masses of the M, H,

c c’ and X model atoms equal to 6.046 95, 1.007 83, and

+— (27 2.015 65 amu, respectively, and with.10,0, (1.10,1, and
IVi=Vikl (P92 (1.10,2 initial conditions. Details of the MXH parametriza-
and tions and initial conditions are given in Ref. 27.
The three YRH cases are the YRHL) parametrization
= + AEO (29) with the (1.10,0 initial conditions, and the YRH.2) param-
Vi =V (P-9)%12u etrization with the(1.02,0 and (1.10,6 initial conditions.
whereC andC’ are unitless parameters greater than or equal € masses of the Y, R, and H atoms are 10, 6, and 1.007 83
to unity, andE, is a positive parameter with units of energy. amu, respectively. Details of the YRH parametrizations and
Equation(27) is similar to the form we used in our previous initial conditions are given in Ref. 28.
paper! and Eq.(28) with C=0 is similar to the form we Since we do not expect the semiclassical methods to
used in our origin&f decay-of-mixing paper. In the present reproduce quantum mechanical oscillations in most cases,
work, we have tested various forms of this type, wtk=1  and since these oscillations usually wash out in experimental
through 5, and we have found that the results are not vergpservables, our goal is to learn how well the semiclassical
sensitive to the particular form afy or to the values of the  eqits can reproduce the quantal ones when any oscillations
parameters, prowded only thaf, is large enough. As an in the quantal results are averaged out. Therefore, the results
example, in Append|x. B we present fuI.I sets .OT Tesu'ts Wlthfrom uantum mechanical calculations at several energies at
three values of, which illustrate the insensitivity of the g . . g
results to this parameter. The results are even less sensitive%Id around the noml.nal ScatFerlng energy were calculated
and averagedfull details are given elsewhéefe’y. In al-

C. Therefore, we simply use E@28) with C=1 andE, i 4
equal to 0.1 hartree. most all cases, the values obtained by averaging are very

All of the decay-of-mixing results given in this paper Similar to the values obtained at the nominal energy.
follow the formalism of Egs(8)—(22), (24), and (28) and For the methods involving trajectories, the coordinates
differ only in how the switching probability is calculated. =~ and momenta of the nuclei and the electronic state popula-
tions were integrated using an adaptive integration algorithm
that was designed for use with semiclassical trajectory
V. THREE-DIMENSIONAL TEST CASES calculations’2 The algorithm uses a Bulirsch—Stoer integra-
AND METHODOLOGY tor with polynomial extrapolatici?*° modified such that the

We apply the SCDM, CSDM, CSDM-C, and ECP-TSH integrator is prohibited from stepping over local peaks and
methods to five fully-dimensional model systems with vari- Minima in the electronic probabilities. For the present calcu-

ous initial conditions for a total of 12 test cases, as discussel@tions, the integration parametérsiere given the following
in Ref. 11. Descriptions of the model surfaces and details ofalues:  egs=10 *E, (1E,=27.211eV) and hy,
the accurate quantum mechanical calculations have been pre-10 *a.u. (1 a.u=2.4189< 10 2fs), which give con-
viously presented for the MXKRef. 27 and YRH(Ref. 28 verged results for the YRH and MXH systems. The trajecto-
systems. Briefly, each model system has two electronic statefes begin the simulation with the lone atd@iin the case of
and is defined in terms of a diabatic potential energy matrixyRH and M in the case of MXMWseparated from the center-
wh|cr|1_ includes two dﬁxgonlal pote.ntlﬁl energy;ugfages and Bf-mass of the diatom by 35 (la,=0.529 18 A) for the
coupling sgr.face. The e ectronically nonadiabatic atomqy,sy cages and by 24, for the YRH cases, and the simu-
diatom collisions that comprise our test suite all have thq .

ation was ended when the product fragments were separated

’TiKzﬁ

C

form o
by at least 38, for both systems. We have verified that the
. BOW.) B+AC(Eiy) (2938 results of the semiclassical simulations do not change when
A*+BC(v,])— . .
A+BC(E,), (29 these distances are increased.

For the methods involving trajectories, the final state in-
where (A,B,C)=(M,H,X) and (Y,R,H) for the MXH and  terng| energie€!, or E,, were determined without quanti-
YRH systems, respectively, the asterisk indicates electronigaiion 1n particular, in all trajectory methods, the relative
excitation,v andj are the initial vibrational and rotational ., nqjatignal energy and the electronic energy become con-
guantum numbers, and the final inteririaé., rovibrational . . .
. ) , . stant after the collision, and the internal energy is computed

energy of the diatomic fragment i, for reaction products . ' . : .
andE?. in the quenched arrangement. as to_tal energy minus final relative translational energy mi-

We label the initial conditions by the total energy n}Js final electronic energf/l\lotg that, for the problems cor?—
given in eV and the initial rotational stajeof the diatomic ~ Sidered herel,, =V, asymptotically, and the final electronic
molecule[i.e., by E/eV,j)]. For all of the cases considered €nergy isV; or V, in TSH and DM trajectories whereas it is
here, the diatom is initially in its ground vibrational state SOome value betweei; andV, in Ehrenfest trajectoriesin
(i.e.,v=0), and the total angular momentum of the system ighe Ehrenfest calculations, the quenching probability was
zero. Electronic angular momentum is neglected. computed by the histogram method.
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TABLE |. Average percentage errors in the probabilities and internal energy distributions for nine MXH and
three YRH test cases.

MXH YRH
Method Rep. Prob. Fract. Prob. Fract. Average
CSDM? A 25 20 24 19 22
D 28 20 42 20 27
CSDM-C A 25 20 23 19 22
D 28 20 51 20 30
SCDM? A 26 21 21 17 21
D 28 20 77 22 37

#Obtained using,=0.1E, andC=1 in Eq.(29).

VI. RESULTS AND DISCUSSION and similarly for the three YRH cases to give YRH percent-

. . . i age error
The semiclassical trajectory calculations and the accu-

rate quantum mechanical results are compared for the fol- _ _
lowing six quantities (=1,2,...,6): PEX;YRH) = ?C;m €,(X), (34)

12

(i) Pg is the probability of reaction, which is the out- whereX=1="“Prob” and X=2="“Fract.” Finally we aver-

come in Eq.(293. N _ o aged the two types of errors and two types of systems to
(ii) Pq is the probability of quenching, which is the out- obtain “average” mean unsigned percentage errors:
come in Eq.(29b). )
(i) Py is the total probability of a nonadiabatic event, PEaverage} 1 D PEX,MXH)+PEX, YRH)
which is the sum oPg andPg. 9 25 2 ’
(iv) Fgis the reactive branching fraction, which is de- i , L
fined asPg/Py,. We report numerical results for five quantities in Tables |
(v) (E.) is the average internal energy of the diatomic@"d !ll: PEProb;MXH), PEFractMXH), PEProb;YRH),
fragment in Eq(298. PEFract;YRH), a'nd PEﬁavgragéz Semlcla§S|caI calculations
(vi) (Ej,p is the average internal energy of the diatomic V€' performed in the adlabgma)h)dlabatlc(D), and Cala-
fragment in Eq.(29b). veras CountyCC) representatlonlé. The Calaveras County
representation is defined as the representation with the fewest

For the three probabilities the errey, for quantityi and  opning attempts in a trajectory surface hopping calculation,
test caser (nine cases for MXH and three cases for YRBl 4 previous work has shodf that this representation is,

reported as the logarithmically averaged percentage error dgy, average, the most accurate representation for trajectory
scribed elsewher®, and for the remaining three quantities, surface hopping.

Fr, (Ein, and(Epy), €, the error is defined as the un-  Regyits for the SCOM, CSDM, and CSDM-C methods
signed relative percentage error given by are presented in Table | f&,=0.1E, andC=1 and using

(35

| Qe auant Eq. (28). The more coherent CSDM and CSDM-C methods
€= ———%__%100. (30)  are more accurate than the SCDM method for the probabili-
quanial ties in the YRH test cases when using the diabatic represen-

tation. For the rest of the test cases, the errors are similar for

For casex, the average error in probabilities is these three methods. This result indicates that for many sys-

- 13 tems the local coherence in the SCDM may be enough to
€,(Prob= 32 €ia (31)  obtain good results, but for certain cases a more coherent
=1 approach is necessary. In no case are the more coherent
and for the next three quantitie§g, (E;), and (El, methods significantly less accurate than less coherent SCDM
(which represent how the energy of the system is fractionnethod.
ated into various nuclear coordinakethe average error is A key reason for the greater success of the CSDM and

CSDM-C methods appears to be that they are a little more
coherent than SCDM. The MXH system has a diabatic cross-
ing of the Landau—Zener—TellgL.ZT) type so that in the
strong interaction region, the decay-of-mixing time in the
These were then averaged over the nine MXH cases to givéiabatic representation is greater than the decay-of-mixing

1 6
€, (Frach= —__24 €in- (32

the MXH percentage error time in the adiabatic representation, and thus the SCDM

9 method in the diabatic representation works as well as the

PE(X:MXH) = %’E e (X), (33) two other methods. On the other hand, the YRH system has
a=1

a Rosen-Zener-DemkdRZD) type of interaction so that in
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TABLE Il. Convergence of mean unsigned percentage ert@sin the branching probabilities and final
internal energies for the ECP-TSH method in the adiabatic representation.

Qcutoff (€V) Pr Po Py Fgr Ein Eine Prob Fract All

MXH SL (E=1.1eV, j=0)

6 10* 100 516 44 188 2 12 220 67 144

6 102 240 141 28 165 2 4 136 57 97

6 1073 230 120 28 158 2 5 126 55 90

6 104 220 102 28 150 2 3 117 52 84
YRH(0.1) (E=1.1eV, |=0)

6 10°° 273 282 281 2 3 4 279 3 141

6 107 264 279 276 3 2 4 273 3 138

the strong interaction region both representations have simi- We used the anteater scheme to carry out ECP-TSH cal-
lar decay of mixings, and this is apparently why the SCDMculations and tested it for the nine MXH and three YRH
method does not work as well in the diabatic representatiocases mentioned above. The calculations were performed at
as the two other methods. The reason why the SCDM in thearious values of) ..« until convergence was reached. Two
adiabatic representation is about as accurate as the CSD&kample cases in the adiabatic representation are presented in
and CSDM-C methods for both the MXH and YRH systemsTable Il where convergence with respect@,. is demon-

is apparently that the distribution of nonadiabatic coupling isstrated. Table Il shows that converged results are obtained
much more localized than the diabatic coupling so that théor MXH SL (1.1/eV,Q with a relatively largeQ) . o5, but a

DM trajectory on average has less deviation from the SEelatively smallQ s IS required for YRH0.1) (1.1/eV,0.
trajectory in the adiabatic representation than in the diabatit/sing the anteater scheme, one can simply¥kgt to zero.
representation. In other words, for a given system, the DMHowever, since previous workers did not always Qetos
trajectory is more coherent in the adiabatic representatior= 0, Table Il is included to demonstrate that for some cases,
than in the diabatic representation. results may be sensitive to this parameter.

TABLE Ill. Mean unsigned relative error®b) in the branching probabilities and internal energy distributions
for nine MXH and three YRH test cases.

MXH YRH
Method Rep. Prob. Fract. Prob. Fract. Average
Trajectory surface hopping methods
ECP-TSH A 90 47 377 4 130
D 123 47 1016 30 304
CcC 118 48 377 4 137
TFESt+ A 57 34 53 18 41
D 54 26 723 49 213
CcC 59 32 53 18 41
TFS— A 54 29 43 15 35
D 47 22 548 29 161
CcC 50 28 43 15 34
FSTUVV A 52 30 31 19 33
D 45 20 230 26 80
CcC 45 28 31 19 33
Self-consistent potential methods
SE All 132 40 a a
SCDM A 26 21 21 17 21
D 28 20 77 22 37
CcC 28 21 21 17 22
CSDM-C A 25 20 23 19 22
D 28 20 51 20 30
CcC 28 21 23 19 23
CSDM A 25 20 24 19 22
D 28 20 42 20 27
CcC 27 21 24 19 23

@None of the trajectories finished in product arrangements.
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TABLE IV. Mean decay-of-mixing timegfs) for SCDM, CSDM, and CSDM-C.

MXH SB MXH WL YRH 0.2
Method Rep. j=2 j=1 1.02 eV,j=0
SCDM A 7.8 8.7 33.0
D 9.7 7.5 33.0
CSDM-C A 7.8227)2 8.6(118 34(184)
D 9.6(234) 7.5117) 34(184)
CSDM A 7.8990) 8.6(58) 34(78)
D 9.6(94) 7.557) 34(78)

*Numbers in parentheses are the average number of minima per trajectory (@0Efpr the CSDM method
and of Eq.(21) for the CSDM-C method. As in Tables | and Ill, we us€d-1 andE,=0.1E,, in Eq. (28).

In Table 111, errors are presented for the TF$where— should average rates, not their reciprocals. Therefore, to av-
denotes that the trajectory is reflectetf at frustrated hops  erage the rates, we calculate the time averagem$ fgr this
TFS+ (where+ denotes that the trajectory is left unchangedportion of each trajectory and then average these values over
at frustrated hops’), FSTUVV (whereVV denotes that the the ensemble of trajectories. Then, the result is reexpressed
choice of whether to reflect or not at a frustrated hop is baseth terms of time units by taking a reciprocal:
on the gradient of the potential as discussed previdysind
SE (Refs. 6 and Pmethods. First, we will discuss the surface — 1
hopping method$ECP-TSH, TFS-, TFS—, and FSTWY V). = (Uryp)”

Table Il shows that ECP-TSH method is less accurate on

average than the TFS method for both the adiabatic and diFhe results for the three successful decay-of-mixing methods
abatic representations, in particular the branching probabiliare shown in Table IV. We notice that the average decay of
ties are much worse in the ECP-TSH method than in the TF#&ixing time is shorter in the adiabatic representation than in
method. This may be partly because some of frustrated hopghe diabatic representation for MXKSB) with j=2 and

in the ECP-TSH method are not frustrated in the TFS metho®YRH (0.2) with j=0, but the average decay of mixing time
as the TFS method allows hops to occur all along the trajecis longer in the adiabatic representation than in the diabatic
tory. Note that for the YRH test cases, surface hopping methrepresentation for MXH(WL) with j=1. The fact that
ods in general give very different results in the adiabatic andCSDM does not require long algorithmic decay times to
diabatic representations. The FSVYV method(which does mimic quantum mechanics may be very important for under-
not incorporate any explicit treatment of decohergris¢he  standing the physical origin of decoherence because requir-
most accurate surface hopping method, and it is the leasbtg a large algorithmic component in the decay of mixing
dependent on the choice of electronic representation. It isould mask the physical origin of decoherence.

possible that one could obtain better a surface hopping We know for MXH (SB) with j=2 and YRH(0.2) with
method by including an explicit treatment of decoherence i =0 that the Calaveras County representation is the adia-
surface hopping using some but not all features of the ECPbatic representation, while for MXHWL) with j=1, the
TSH method, but we did not pursue this here. Calaveras County representation is the diabatic representa-

Next we discuss the SCP methodSE, SCDM, tion. The examples in Table IV show that the representation
CSDM-C, and CSDM The SE method is not accurate for with shorter average decay of mixing corresponds to the
real multidimensional systems. Table 1ll shows that theCalaveras County representation. This coincidence is also
CSDM, CSDM-C, and the SCDM methods are the most actrue for the other decay of mixing methods shown in Table Il
curate with errors comparable to thdséor single-surface of Ref. 11. Thus it may be unnecessary to run surface hop-
quasiclassical trajectory calculations. The CSDM andping calculations to determine the Calaveras County repre-
CSDM-C methods are less sensitive to the choice of elecsentation; one can simply use the representation in whish
tronic representation than the SCDM method. The CSDMshorter.
method provides a simple and accurate solution to the prob- Table IV also shows the average number of local minima
lem of combining decay-of-mixing trajectories and coherentper trajectory of Eq(20) for the CSDM method and of Eq.
electronic state densities in non-Born—Oppenheimer dynam221) for the CSDM-C method. These statistics are important
ics. because it is at such local minima where the electronic den-

To gain insight into the decay-of-mixing process incor- sity matrix for computing the switching probability is set
porated into the successful decay-of-mixing algorithms, weequal to the decay-of-mixing electronic density matrix. Some
computed the time average of the decay-of-mixing rates dereaders might be surprised at how large these numbers are
fined by Eq.(28). As the decay-of-mixing time is not mean- since one often thinks of polyatomic collisions as similar to
ingful in the initial and final legs of the trajectories where the atomic collisions, where this number might often be only 2.
coupling is essentially zero, we average only over the porfor the present cases the number of local minima in the
tions of the trajectories where 082,,=<0.98. Recall that CSDM-C method is roughly equal to 2.5 times the number of
715 IS the reciprocal of a first-order rate constant, and wdocal minima in the CSDM method. This is because the

(36)
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CSDM-C method often has a local minimum at a vibrationalof coupling regions. A good example would be a system with
model turning point, which is not a local minimum for the a conical intersection where close to the cone, one has an
CSDM method. LZT type of avoided crossing such as MXH, but in regions
The present study illustrates the importance of properhfar from the cone one has RZD type interactions as in YRH.
balancing coherence and decoherence, and the formulation Another example would be a three-state system where the
Eqg. (28) is reasonable for studying collisions and photo-coupling between states 1 and 2 is most naturally treated in
chemical processes in small as well as big molecules. Newhe adiabatic representation but the couplings between states
ertheless a deeper understanding of the best ways to incat-and 3 or 2 and 3 are more diabatic. For such a system, one
porate coherence and decoherence into semiclassical theargeds a method that works equally well in both representa-

would be worthwhile. tions. CSDM is especially well suited to satisfy this need for
Although the present paper only involves two-state ap-multidimensional dynamics.
plications, the method§-STU and decay of mixinghat we One will be much safer to treat general complex systems

have presented are all defined for the general multistate casé.one has method that yields accurate results in both repre-
sentations, and CSDM can fill this need.
VIl. CONCLUDING REMARKS The key results of this paper are in Table IIl. This table

Recent interest in quantum measurement theory has Ie%]"OWS that for 12 test cases involv_ing five different atom-
to increased interest in decoherence and its relation to th latom systems, the CSDM method is the most accurate self-

classical limit of quantum mechanig$:*8In a more specific cins:ﬁteniﬁotgg%li/cg ThetQOd’h?nr? I |shalso meI’(ej ?chu'

context, Thachuk, Ivanov, and Wardiilluminated the key .rateh an te i 'rIPSeHO 't\;]v :jc Awe ave ognt 0 fe

roles of coherence and decoherence for two-state on(ﬁ‘ € most accurate method. AAS compared 1o surface
opping methods, the CSDM method has the advantage that

coordinates and momenta are continuous with continuous de-
phasized the importance of decoherence in the simulation ]1vat|vis along eaght trfﬁectory.; iemd_thtlersharefncl frustara:jeqt
electronically nonadiabatic processes in the condense pf", scoLnr;?ret Ot estemflcdaSSIEa ren_le_,ﬁ metho ’tl
phases. Hack and one of the autidmeveloped a formal- contains a betler treaiment ol decoherence. The computa-

ism, called natural decay of mixing, for adding decoherencég)nal effort for practical problems is nearly the same as for
to the semiclassical Ehrenfest method and showed that th

dimensional system interacting with an oscillatory time-
dependent electric field, and Rossky and co-worKeesn-

SH and semiclassical Ehrenfest methods. The CSDM

resulting treatment were the most accurate of all availabltl,‘m'lthod is suited for general polyatomic applications.
semiclassical trajectory methods for non-Born—Oppenheimer
collisions. We showed in a previous pafethat we obtain ACKNOWLEDGMENTS
more accurate results for electronically nonadiabatic colli-  The authors are grateful to Dmitri Babikov for a helpful
sions by adding more coherence to the natural decay-otonversation. This work was supported in part by the Na-
mixing algorithm; the resulting algorithm was called self- tional Science Foundation under Grant No. CHE03-49122.
consistent decay of mixingSCDM). In the present paper, by
using a coherent complete passage qf each stro_n_g interactiqbpeNDIX A: SWITCHING PROBABILITY
region to compute the local switching probability of the FOrR MULTISTATE CASES
SCDM method, we have further improved the decay-of- o -
mixing method for nonadiabatic dynamics, resulting in a al- e can formulate the switching probability for the mu-
gorithm called coherent switches with decay of mixing litstate case by.followmg Tglly’s fewest switching methdd,
(CSDM). We also consider the exact complete passaggnd the switching probability from 'the'current decoherent
(ECP algorithm of Parlant and Gislasbifor adding coher-  StateK to another decoherent ste€ is given by
ence to trajectory surface hoppiri@SH) calculations. Al- (bK/K—bEK)dt
though the ECP-TSH method does not improve the TFS PKﬁKr=ma><—,O), (A1)
method on average, the key feature of this method is bor- Prk
rowed for the SCDM method, where it leads to the CSDMwhere we have
method. _ -1

It is important to emphasize that the decay-of-mixing b= =2 Impk Uk (A2)
method, CSDM, performs almost equally well in the adia-for the diabatic representation wheg=Uk, and
batic and diabatic representations. The reasons why this is _ o,
important can be summarized as follows: First, it is not al- bric=2 RelprkR-Oic) (A3)
ways possible to predidiwhen the accurate quantal results for the adiabatic representation whedg = —dkk: . (Re-
are unavailablewhich representation is preferred. Secondcall thatpyy:=py . .) The NDM method requires that both
and even more significant, for complex systems there can bexx and px:x in Egs. (A1)—(A3) are calculated from the
regions of configuration space in which the adiabatic repredecay-of-mixing electronic density of E¢9). The SCDM
sentation is preferred, but, for the same system with the sanmend CSDM methods require omittir‘;&g?K in Eq. (Al); fur-
initial conditions, there can be other regions of configurationthermore in the CSDM method bokx and pk:« should
space where the diabatic representation is more natural. also be replaced byyx andpk ¢ defined in Sec. IV C.
particular, in real molecular dynamics simulations, one may It is useful to point out the relationship to the coherent
encounter systems with several qualitatively different kindserm in Eq.(9), i.e.,
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TABLE V. A detailed comparison of results for selecteg values using  TABLE VI. A detailed comparison of results for selecteg values using
CSDM, CSDM-C, and SCDM methods for the MXH system. CSDM, CSDM-C, and SCDM methods for the YRH system.

Method E, Rep. P Po Py Fr Ej, Ej, Prob Fract All Method E, Rep. P Pq Py Fgr Ej, Ej, Prob. Fract. All

int int

CSDM 005 A 42 33 24 20 21 24 33 22 27 CSDM 005 A 43 27 24 40 9 20 31 23 27
D 25 44 21 19 16 19 30 18 24 D 44 74 69 27 6 18 62 17 40

CC 39 41 25 20 21 23 35 21 28 CC 43 27 24 40 9 20 31 23 27

0.1 A 25 32 17 17 23 21 25 20 22 0.1 A 24 28 18 30 7 19 24 19 21

D 27 42 15 24 18 17 28 20 24 D 38 49 39 34 5 20 42 20 31

CC 24 40 18 19 23 20 27 21 24 CC 24 28 18 30 7 19 24 19 21

0.2 A 36 37 13 27 26 17 29 24 26 0.2 A 32 31 20 40 7 17 28 21 24

D 61 44 11 37 21 14 39 24 31 D 64 28 21 42 5 22 38 23 30

CC 37 42 13 29 26 16 31 24 27 CC 32 31 20 40 7 17 28 21 24

CSDM-C 0.05 A 43 33 25 20 21 23 34 22 28 CSDM-C 0.05 A 44 27 25 41 9 20 32 23 28
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